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Chapter 20

ALTERNATING   CURRENT

A.)  The Production of AC:

1.)  When a coil is placed in a magnetic field and is rotated, a changing
flux ∆Φm through the coil will produce an induced EMF across the coil's
leads.  A surprising result is found when Lenz's Law is used to determine
the direction of the induced current and, hence, the high and low voltage side
of the coil as the coil rotates.  Follow along:

a.)  Assume the external mag-
netic field is directed into the page and
the coil is initially facing the B-field
(see Figure 20.1a--note that the right
side of the coil--the part that will ini-
tially rotate into the page--is darker;
this has been done to make it easier to
follow the coil through the complete
360o rotation).  As the coil begins to ro-
tate, the external flux through the
coil's face diminishes (Figure 20.1b).
The coil generates an induced current
which opposes the decrease of flux,
which means an induced B-field is
created into the page.  The direction of

FIGURE 20.1b
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flux decreases in first quarter;
   induced B into page;
      lead A positive

this side of the
coil is turning
           into the
                page

current flow required to do this is
clockwise, which means lead A must be
the positive side of the coil.

b.)  The coil rotates through the no-
external-flux position and into the sec-
ond quarter of its cycle (Figure 20.1c on
the next page).  In this part of its
motion, the external flux is increasing.
The induced B-field required to oppose
this increase must be out of the page,
which requires an induced current that
is counterclockwise relative to
ourselves.  As such, lead A must again
be the positive side of the coil.
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FIGURE 20.1c
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flux increases in second quarter;
   induced B out of page;
      lead A positive

c.)  The coil rotates through the
maximum-flux position and into the
third quarter of its cycle (Figure 20.1d).
In this part of its motion, the external
flux is decreasing.  The induced B-field
required to oppose this decrease must
be into the page, which requires a
current that is clockwise relative to
ourselves.  As such, lead A must be
negative.

FIGURE 20.1d
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     page)
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flux decreasing in third quarter;
   induced B into page;
      lead A negative

d.)  Lead A will be negative through the
last quarter of the rotation (just as in Part b
above, but with the lead positions switched).

e.)  Bottom line:  The high-voltage side of a
rotating coil alternates from one side to the
other as the coil turns.  This is how alternate
current (AC) is generated.

2.)  AC Power--From the Power Plant to You:

a.)  Power production:  Consider a hydroelectric plant.  A waterfall
turns a turbine, the shaft of which is attached to a giant coil.  The coil
is suspended in a fixed magnetic field.  As the coil rotates, AC is pro-
duced across its leads.  Sliding contacts tap the alternating voltage.

b.)  Transport:  Sending the electrical power to the city requires the
use of wires.  The single biggest source of energy loss during this
transfer is due to the heating-up of those wires.  As high currents
generate lots of heat, the trick is to keep the current as low as possible.

Using a step-up transformer, the voltage is stepped up to, say,
50,000 volts.  This drops the current down quite low for the span be-
tween the power generator and the city.  As there are few toasters that
can handle 50,000 volts, a step-down transformer steps the voltage at
the city down either to 110 or 220 volts AC allowing current-availability
to go upward in the process.  In that way, power companies can
accommodate hundreds of thousands of homes at once.

The entire process is displayed in Figure 20.2 on the next page.
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V(t) = V   sin (2π   t)o

B.)  The Fundamentals of Alternating Currents:

1.)  The circuit symbol for an AC power
supply is shown in Figure 20.3.

2.)  Figure 20.4 graphs the voltage
difference between the two terminals as a
function of the time-related variable ωt.
Assuming the voltage difference across the
terminals is positive when the left terminal is
the higher voltage, we find:

a.)  At t = 0 there is no voltage
difference between the terminals.

AC voltage

FIGURE 20.4

t

b.)  As time progresses the
voltage difference between the
two terminals gets larger until
it hits some maximum (see
Figure 20.5a on the next page).
The maximum is defined as the
amplitude of the voltage func-
tion and is sometimes called the
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voltage

FIGURE 20.5a
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   across the power supply 
       terminals increases 

voltage

FIGURE 20.5b
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     voltage difference
across terminals is zero

as time progresses during this
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FIGURE 20.5c

t

voltage polarity
 switches here

   as time progresses during this
   period, the voltage difference 
       across the power supply
terminals reverses and increases  

-Vo

peak voltage.  Under most cir-
cumstances this peak voltage is
symbolized as Vo.

c.)  After reaching its peak,
the voltage difference between
the terminals decreases back
down to zero (see Figure 20.5b).
At this point, the high and low
voltage terminals reverse.  To
denote this change, reverse-
polarity voltages are defined
as negative voltages.

Note:  The implication is that
there is no real difference between
a positive or negative voltage when
dealing with AC.  In one case the
high voltage terminal is, maybe, on
the left while in the other case the
high voltage terminal is on the
right.  The words "positive" and
"negative" are used simply to
distinguish between the two
situations.

d.)  After polarity rever-
sal, the voltage difference be-
tween the terminals gets
larger with time (Figure
20.5c) until it again reaches
its maximum negative peak
Vo (-Vo on the graph--see
Figure 20.5c).  It then pro-
ceeds back towards zero.
Once at zero, the polarity
changes and the process
starts all over again.

e.)  The function that defines this behavior is a sine wave.  That is,
time-dependent voltage sources can be mathematically characterized
as:
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FIGURE 20.6a

R

Vo

        V(t) = Vo sin (ω t)

                = Vo sin (2πν t),

where ω is the angular frequency in radians per second of the
alternating voltage and ν is the more common frequency variable in
cycles per second or hertz.

Note:  The AC in your home has a frequency of 60 hertz.  Multiplying
by 2π yields a voltage function for home wall-sockets of:   V(t) = Vo sin (377 t).

3.)  The current through a resistor hooked to an AC power supply
produces a graph similar to that shown in Figure 20.4.  That is, the time-
dependent current function looks just like the time-dependent voltage
function, or:

      i(t) = io sin (ω t)

          = io sin (2πν t).

Note:  For resistors, the frequency of the AC voltage source and the
frequency of the current functions will always be the same.

C.)  RMS Voltages and Currents:

1.)  AC voltages and the currents they produce are constantly varying
not only in magnitude but also in direction.  It would be nice to quantify such
AC variables with some kind of time-
INDEPENDENT, pseudo-average value
("pseudo" in the sense that a normal average
will not work--the time-average of a sine wave
is zero).  As such, a bit of a different view has
been taken.  Consider the following:

a.)  Hook a DC power source to a re-
sistor (Figure 20.6a).  The amount of
power dissipated by the resistor will be
i2R, where i is the constant DC current
in the circuit.
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FIGURE 20.6b

R

V(t) = V   sin (2π   t)o
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b.)  Hook an AC power source to the
same resistor (Figure 20.6b).  There
will be power dissipated by the resistor,
but how much?  To determine this:

i.)  At any instant t, the amount
of power being dissipated by a resis-
tor will be i2R, where i is the
circuit's current at time t.  Over an
extended period of time, the power
dissipated will be (i2)avgR.  In other
words, the average of the
current squared is the
important quantity here.

ii.)  AC current varies as
shown in Figure 20.7.  The AC
current squared is also shown
in that figure.

iii.)  To a good approximation,
the average of the AC current
squared is io

2/2.  The power
being dissipated by the resistor
will, therefore, be:

P = (i2)avgR

   = (io
2/2) R.

iv.)  If we want to define a constant, time-independent current
value--an effective current ieff--that when squared and multiplied
by R will equal the amount of power dissipated by the resistor when
in the AC circuit, we can write:

(ieff)
2 R= (i2)avgR

                = (io
2/2) R.

This implies that:

        ieff = io / (2)1/2

          = .707 io.
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v.)  Bottom line:  The power-producing current provided to a
circuit by an AC source has a DC equivalent.  That DC equivalent
(it was called the effective current above) is equal to .707io, where io
is the amplitude of the AC current function.

  Because this value was determined by taking the square root of
the mean value of the square of the AC current, the value is called
the "root mean square" value.  In almost all physics textbooks, this
is shortened to RMS.  In other words, to be conventional, the
effective current should be termed iRMS.

vi.)  Summary:  The effective current in an AC circuit is called
the RMS current and is equal to:

       irms = .707io.

Similarly, the effective voltage in an AC circuit is called the RMS
voltage and is equal to:

      Vrms = .707Vo.

c.)  All AC meters read RMS values (both ammeters and volt-
meters).

i.)  Example: You are probably aware that most of the wall
sockets in your home provide 110 volts AC at a frequency of 60 hertz
(the few that do not are rated at 220 volts AC and are hooked to big
appliances like washers and dryers).  This means that if we plug
the leads of an AC voltmeter into a wall-socket, the meter will read
a constant RMS voltage of 110 volts.

With that in mind, write the function that characterizes a wall-
socket's voltage as a function of time.

Solution:  As stated, you know that the RMS voltage reading is
110 volts.  The relationship between voltage amplitude Vo and RMS
voltage VRMS is:

Vrms = .707 Vo
     ⇒     Vo = Vrms/.707

        =  (110 volts)/(.707)
        = 155.6 volts.

With ν = 60 hz, the wall-socket voltage function is:
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FIGURE 20.8

V(t) = V   sin (2π   t)o

R

V(t) = Vo sin (2πν t)
         = 155.6 sin (377 t).

Note:  Another voltage value sometimes cited is the peak-to-peak (more
accurately, the peak-to-trough) voltage.  By definition, Vpp = 2Vo.

D.)  A Lone Resistor in an AC Circuit:

1.)  We have already established that in DC circuits, the voltage across
a resistor is directly proportional to the cur-
rent through the resistor.  Mathematically,
this relationship is summed up in Ohm's
Law which states that VR = iR.  The propor-
tionality constant R is a relative measure of
the resistive nature of the circuit.  That is, a
large R implies a lot of resistance to charge
flow whereas a small R implies very little
current resistance.

2.)  A resistor in an AC circuit (see
Figure 20.8) behaves just as a resistor does in
a DC circuit.  At any instant, the voltage and current are related by Ohm's
Law (Vrms = irms R) and the power is related as P = (irms)

2R.

3.)  A power supply that can generate a variable frequency voltage (i.e.,
voltages at frequencies other than 60 hertz) is called a sine wave generator or
a function generator.

4.)  No matter what frequency a sine wave generator outputs into a
resistor circuit, the resistive nature of the resistor will always be the same.
Put another way, the resistive nature of a resistor is not frequency-
dependent.

5.)  The current through a resistor and the voltage across a resistor
will always be in phase.  That is, as the voltage increases, so will the current.
As the voltage decreases, so will the current.  When the voltage is zero, so is
the current, etc.
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FIGURE 20.9
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V(t) = V   cos (2π   t)o

E.)  An Inductor and Resistor in an AC Circuit:

1.)  Consider the RL circuit shown in
Figure 20.9.

2.)  The inductor in the circuit will have
a certain amount of resistance rL inherent
within the wires that make up its coils.  That
resistance will act like any other resistor-like
element in an AC circuit.

3.)  In addition to rL, the inductor also
has a resistive nature that is frequency-
dependent.  Not obvious?  Follow along.

FIGURE 20.10

V   = iR

V   =      + ir

V(t) = V   cos (2π   t)o

R

LL

voltages around
       an RL, AC circuit

a.)  When an alternating current passes through an inductor,
Faraday's Law demands that an induced EMF be generated across the
leads of the coil that will ultimately produce an induced magnetic flux
that opposes the changing magnetic flux through the coil's face.  From
the previous chapter, the magnitude of this induced EMF equals:

εL = L (di/dt).

b.)  Writing a Loop Equation for an RL
circuit (see Figure 20.10 for the voltages
associated with each element), we get:

(- εL - ir) - iR + Vo cos (2πνt) = 0.

In this expression, εL is the induced, fre-
quency-dependent voltage drop across the in-
ductor (i.e., L di/dt), 2πν is the angular
frequency of the power supply, and a cosine function has been used to
characterize the varying voltage across the power supply (I've done
this because it will make life easier when we do the evaluation that is
to follow--we could as well have used a sine function, but the resulting
expression would have been a bit messy).  Substituting in and
rearranging this expression, we get:

               L (di/dt) + ir + iR = Vo cos (2πν t).
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c.)  The resistor-like resistance inherent in an inductor is some-
times negligibly small, sometimes not, so for the sake of simplicity we
will lump it with R to get Rnet.  Doing so, the above expression becomes:

L (di/dt) + iRnet = Vo cos (2πνt).

d.)  Though you will never have to derive this on a test, we need an
expression for the resistive nature of the inductor excluding the
resistor-like resistance inherent within its wires.  To do this:

i.)  Assume the resistance of (and, hence, voltage across) all of
the resistor-like elements in the circuit is negligible (i.e., that Rnet
= 0).  In that case, Kirchoff's Loop Equation becomes:

      L (di/dt)  = Vo cos (2πνt).

ii.)  We know the voltage across the power supply and inductor.
We'd like an expression for the current through the circuit.  To de-
termine this, we need to manipulate and integrate.  Doing so yields:

    

L
di
dt

V t

Ldi V t dt

L di V t dt

Li V t

i
V t

L
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4.)  Important point:

a.)  Ohm's Law maintains that the current through an element
must equal the voltage across the element divided by a quantity that
reflects the resistive nature of the element.  In the above expression,
the voltage across the element is evidently Vo[sin(2πνt)].  That means

the resistive nature of the inductor must be 2πνL.

b.)  In fact, this is the frequency-dependent resistive nature of an
inductor.  It is called the inductive reactance, its symbol is XL, and its
units are ohms.  Summarizing, we can write:
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     XL = 2πνL  (ohms),

where the inductance L must be written in terms of henrys (versus
milli-henrys or whatever).

c.)  Although we assumed the resistor-like resistance of the circuit
was negligible to do the derivation, in fact this inductive reactance
expression is true whether the resistor-like resistance is big or small.

5.)  Side-Note:  Does the frequency-dependent expression for the resis-
tive nature of an inductor (i.e., its inductive reactance) make sense?
Consider:

a.)  Consider a general RL circuit (i.e., one in which Rnet is not
small) hooked across a power supply that runs at low frequency.

Note:  A low frequency voltage means that although the amplitude of
the voltage of the power supply may be large or small, the rate at which the
voltage changes is very slow.

i.)  A low frequency voltage will produce a low frequency cur-
rent.

ii.)  A low frequency current means that di/dt will be small (the
current is changing slowly if it is low frequency).

iii.)  A small di/dt means the induced voltage drop across the in-
ductor (Ldi/dt) is small.

iv.)  A small induced voltage drop across the inductor implies a
relatively large voltage drop across the resistor (at any instant, the
two have to add up to the voltage across the power supply--a
quantity that can be large).

v.)  As the voltage drop across a resistor is directly proportional
to the current through the resistor, a large voltage drop across the
resistor implies a relatively large current through the resistor and,
hence, through the circuit.

b.)  Bottom line #1:  The current in an RL circuit will be relatively
large when a low frequency signal passes through the circuit.  That
means we would expect the inductive reactance (the resistive nature of
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FIGURE 20.11a
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    i/  t = 0;  This means
  the voltage (L   i/  t) is
zero at this point in time

current in an AC circuit

V
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(prop. to
     i/  t) 

      the inductor's voltage LEADS
the circuit's current by a quarter cycle

voltage across the inductor

FIGURE 20.11b

   i/  t = "maximum;"  This means
the voltage (L   i/  t) is maximum
           at this point in time

the inductor) to be small at low frequencies.  This is exactly what our
derived expression predicts (i.e., when ν  is small, XL = 2πνL is small).

c.)  Using similar reasoning, a power supply running at high volt-
age creates a high frequency current that will produce a very large
di/dt value.  In such a case, the voltage drop across the inductor (L
di/dt) is relatively large and the voltage drop across the resistor is rela-
tively small.  A small voltage drop across the resistor suggests a small
current flowing in the circuit.

d.)  Bottom line #2:  The current in an RL circuit will be relatively
small (i.e., approaching zero) when a high frequency signal passes
through the circuit.  That means we would expect the inductive reac-
tance to be big at high frequencies.  This is exactly what our expression
predicts (i.e., when ν  is large, XL is large).

e.)  Summary:  An inductor in an AC circuit passes low frequency
signals while damping out high frequency signals.  As such, induc-
tors are sometimes referred to as low pass filters.

6.)  The second point to note about
Equation A again has to do with its form.  By
assuming a power supply voltage that is
proportional to cos (2πνt), and assuming that
the net resistance in the circuit is zero (i.e.,
Rnet = 0 so that the voltage across the
inductor is the same as that across the
power supply), we find that the circuit's
current is proportional to sin (2πνt).
Examining the graph of these two functions
(the current is shown in Figure 20.11a and
the voltage shown in Figure 20.11b) allows us
to conclude that in this situation the voltage
across the inductor leads the current
through the inductor (i.e., the circuit's
current) by π/2 radians.

Note:  This π/2 phase shift exists
ONLY if there is no resistor-like resistance
in the circuit.  As there will never be the case
in which there is absolutely no resistor-like
resistance in a circuit, the phase shift in a
real AC circuit will never by π/2.  Calculat-
ing the real shift is something you will run
into shortly.
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FIGURE 20.12
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V(t) = V   sin (2π   t)o

RC, AC circuit

FIGURE 20.13

V   = iR

V(t) = V   sin (2π   t)o

R

voltages around
       an RC, AC circuit

V   = q/CC

F.)  A Capacitor and Resistor in an AC Circuit:

1.)  Consider the RC circuit shown in Figure 20.12.

2.)  Unless it is leaky, the capacitor in the
circuit will have no resistor-like resistance in-
herent within it.  As such, we will assume
there is no ir voltage drop across the capacitor.

3.)  Just as there is a frequency-depen-
dent resistive nature associated with an induc-
tor, there is a frequency-dependent resistive na-
ture associated with a capacitor.  To see this,
consider the following:

a.)  The voltage drop across a
capacitor is defined as:

          VC = q/C,

where q is the magnitude of charge on one capacitor plate and C is the
capacitor's capacitance.

b.)  In this case, again to make the evaluation easier later on, let's
assume the power supply's voltage is
characterized as a sine function (a cosine
function would also work, but it would be a
little messy to make sense of later, so we'll use
the sine).  With that assumption, a Kirchoff's
Loop Equation for this circuit (see Figure
20.13) becomes:

  - q/C - iR + Vo sin (2πνt) = 0.

Manipulating, we get:

                q/C + iR = Vo sin (2πνt),

where q is a time varying quantity in the expression (we could denote it
q(t), but, for simplicity, we will leave it as presented).

c.)  Though you will never have to derive this on a test, we need an
expression for the resistive nature of the capacitor.  To do this:



278

i.)  Assume the resistor-like resistance in the circuit is negligi-
ble (i.e., that R = 0).  In that case, Kirchoff's Law becomes:

q/C  = Vo sin (2πνt)

     ⇒     q  = CVo sin (2πνt).

ii.)  Remembering that i = dq/dt, we can write:
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dq
dt
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4.)  As pointed out in the inductor section, Ohm's Law maintains that
the current through an element must equal the voltage across the element
divided by a quantity that reflects the resistive nature of the element.  In the
above expression, the voltage across the element is Vocos(2πνt).  That means

the resistive nature of the capacitor must be 1/(2πνC).
In fact, this is the frequency-dependent resistive nature of a capacitor.

It is called the capacitive reactance, its symbol is XC, and its units are ohms.
Summarizing, we can write:

     
    
XC = 1

2πνC
   (ohms),

where the capacitance C must be written in terms of farads (versus leaving it
in microfarads or whatever).

5.)  Side-Note:  Does the frequency-dependent expression for the resis-
tive nature of a capacitor (i.e., its capacitive reactance) make sense?
Consider:

a.)  Assume the voltage of a power supply runs at low frequency.
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low frequency voltage

FIGURE 20.14a

    time interval during 
which there exists a large 
  charge on the capacitor

t

i o

high frequency voltage

FIGURE 20.14b

 the current charges and discharges 
   the cap so fast that the capacitor's 
   voltage, on average, goes to zero

t

i o

i.)  Examining the low fre-
quency signal shown in Figure
20.14a, it is evident that the sig-
nal is changing very slowly and
that there is a respectable
amount of charge on the capaci-
tor a fair portion of the time.  In
other words, the capacitor has
plenty of time to charge up and,
on the average, the voltage (q/C)
across the capacitor is relatively
large.

ii.)  Because the capacitor's
voltage is relatively large on average, the voltage across the resistor
will be relatively small.  This implies a small current in the
circuit.

b.)  Bottom line #1:  The current in an RC circuit will be relatively
small (i.e., zero) when a low frequency signal passes through the cir-
cuit.  That means we would expect the capacitive reactance (the resis-
tive nature of the capacitor) to be large at low frequencies.  This is ex-
actly what our expression predicts (i.e., when ν  is small, XC = 1/(2πνC)
is large).

c.)  Assume the voltage of a power supply now runs at high fre-
quency.

i.)  Examining the high
frequency signal shown in
Figure 20.14b, it is evident
that the signal is changing
very fast.  There are not great
spans of time during which
the capacitor is charged,
hence there are not great
spans of time during which
the voltage across the capaci-
tor is high.  In fact, the volt-
age (on the average) is low
(remember, the time average
of a high frequency sine wave
is zero even over relatively small time intervals).
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t

  as    V/   t =   (q/C)/   t = 0, 
the current (   q/   t) is zero 
      at this point in time

voltage across a capacitor in an AC circuit

t

       the capacitor's voltage LAGS
the circuit's current by a quarter cycle

FIGURE 20.15b

   V/   t = "maximum;"  This means
 the current (   q /   t) is maximum
           at this point in time

current in the circuit

V   = q/CC

FIGURE 20.15a

(  q/  t) 

ii.)  A small voltage across the capacitor (on average) means a
large voltage across the resistor.  This implies a large current in
the circuit.

d.)  Bottom line #2:  The current in an RC circuit will be relatively
large when a high frequency signal passes through the circuit.  That
means we would expect the capacitive reactance to be small at high
frequencies.  This is exactly what our expression predicts (i.e., when ν
is large, XC is small).

e.)  Summary:  A capacitor in an AC circuit passes high frequency
signals while damping out low frequency signals.  As such, capacitors
are sometimes referred to as high pass filters.

6.)  The second point to note about Equation B is, again, its form.  By
assuming a power supply voltage that is proportional to sin (2πνt), and
assuming that the net resistance in the circuit is zero (i.e., Rnet = 0 so that
the voltage across the inductor is the same as that across the power supply),
we find that the circuit's current is proportional to cos (2πνt).  Examining the
graph of these two functions allows us to conclude that in this situation the
voltage across the capacitor lags the current through the capacitor (i.e., the
circuit's current) by π/2 radians.

Does this make sense?

a.)  The voltage across a ca-
pacitor is proportional to the
charge on the capacitor (i.e., VC
= q/C).  Figure 20.15a depicts a
graphical representation of this.

b.)  Current is defined as the
amount of charge that passes a
particular point per unit time
(i.e., i = dq/dt).

c.)  The slope of the capaci-
tor's voltage function is

dVC/dt = (1/C)(dq/dt)
          = i/C.

d.)  In other words, a graph
of the slope of the capacitor's
voltage function gives us a modi-
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FIGURE 20.16

R

L, r

V(t) = V   sin (2π   t)o

an RLC, AC circuit

C

fied current function.  Figure 20.15b shows this.

e.)  In comparing the graphs, it is evident that the voltage across
the capacitor LAGS the current in the circuit by one quarter of a cycle,
or π/2 radians.

Note:  As was the case with the inductor, this π/2 phase shift exists
ONLY if there is no resistor-like resistance in the circuit.  As there
will never be the case in which there is absolutely no resistor-like
resistance in a circuit, the phase shift in a real RC circuit will never by
π/2.  Calculating what it actually is in a given case is something you
will run into shortly.

G.)  A Capacitor, Inductor, and Resistor in an AC Circuit:

1.)  Until now, the algebraic expressions de-
fining the resistive natures of capacitors and induc-
tors have been perfectly straightforward.  However,
something a little more complex happens when a
capacitor, inductor, and resistor are all placed in
the same AC circuit (see Figure 20.16).  As capaci-
tors dampen out low frequency while inductors
dampen out high frequency, the question arises, "Is
there any frequency at which a current can flow?"

It turns out that there is one frequency (or a
small range of frequencies) where the effect of the
capacitor is negated by the effect of the inductor.  At
that frequency, the circuit's net resistive nature
becomes small and a relatively large current flows.
To determine that frequency, we must first determine an expression for the
net resistive nature of the RLC circuit.  To do that, we could do as we did with
the RC and RL circuits.  That is, we could write out Kirchoff's Loop equation
for the circuit, solve for the current, then compare that expression with the
Ohm's Law relationship i = V/(resistive nature) to determine the circuit's net
resistive nature.

As mathematically intriguing as this might be, there is another way
utilizing what are called phasor diagrams.

2.)  Phasor diagrams:

a.)  For a given frequency, there are three vectors in a phasor
diagram:

i.)  The magnitude of the first vector is equal to the magnitude
of the net resistive nature provided by the elements in the circuit
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elementary phasor diagram

R net

that do not throw the voltage out of phase with the current at all.
These elements are resistors.  Their net resistive nature is denoted
by Rnet (in most cases, this Rnet = R + rL--remember, there is usu-
ally resistor-like resistance inherent in the wire making up the in-
ductor coil).  This vector will be graphed along the +x axis.

Note:  In this kind of diagram, circuit elements that leave the voltage
in phase with the current are graphed BY DEFINITION along the +x axis.
Elements that make the voltage lead the current by a quarter cycle are
graphed at +π/2 radians from the +x axis (i.e., along the +y axis), and ele-
ments that make the voltage lag the current by a quarter cycle are graphed at
-π/2 radians (i.e., along the -y axis).

ii.)  The magnitude of the second vector is equal to the magni-
tude of the net resistive nature provided by the elements in the cir-
cuit that make the voltage lead the current by π/2 radians.  These
elements are the inductors.  Their net resistive nature is denoted
by XL and that quantity is frequency-dependent.  This vector will be
graphed along the +y axis.

iii.)  The magnitude of the third vector is equal to the magnitude
of the net resistive nature provided by the elements in the circuit
that make the voltage lag the current by π/2 radians.  These ele-
ments are
capacitors.
Their net
resistive
nature is
denoted by XC
and that
quantity is
frequency-de-
pendent.
This vector
will be
graphed
along the -y
axis.

b.)  A typical
phasor diagram
is shown in
Figure 20.17a.
The vector
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FIGURE 20.17c
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FIGURE 20.17d
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addition of the two vectors
found along the y axis is
shown in Figure 20.17b, and
the final vector addition (i.e.,
the one that produces the
resultant Z) is shown in
Figure 20.17c.

3.)  Impedance:

a.)  The resultant of the
phasor diagram is given a
special name--the circuit's
impedance (its symbol is Z).  It
tells us two things: the net
resistive nature of the entire
circuit and the phase shift of the
circuit (i.e., the degree to which
the voltage leads or lags the
current at a given frequency).

b.)  Algebraically (using the
Pythagorean relationship and
the diagram), the magnitude of
a circuit's impedance equals:

Z = [Rnet
2 + (XL - XC)2]1/2.

c.)  The units of Z are ohms.

d.)  Writing Z out in expanded
form, we find that it is frequency-
dependent:

Z = [Rnet
2 + [2πνL - 1/(2πνC)]2]1/2.

e.)  Using trig. and the phasor
diagram shown in Figure 20.17d,
the phase shift is found to be:

  φ = tan-1 [(XL - XC) / Rnet].
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FIGURE 20.18
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frequency response of an RLC circuit

Note:  If the calculated phase shift is positive, the voltage leads the
current.  If the phase shift is negative, the voltage lags the current.

4.)  The Resonance Frequency of an RLC circuit:  We began this section
on RLC circuits by posing a question:  "Is there a frequency at which the re-
sistive effects of the inductor and capacitor cancel one another out leaving us
with a substantial current flowing in the circuit?"

Our impedance expression gives us the answer.

a.)  As both XL and XC are frequency-dependent, there must be a
frequency at which XL - XC equals zero. At that frequency, the net re-
sistive quality of the circuit (i.e., its impedance) will be at a minimum,
and a relatively sizable current should flow.

This special frequency is called the resonance frequency νres.

b.)  Mathematically, the resonance frequency can be found as
follows:  At resonance,

               XL - XC = 0

⇒     2πνresL - 1/(2πνresC) = 0

           
  
⇒ =

π
νres LC

1
2

1
.

A graph of the frequency response
(i.e., current as a function of
frequency) of an RLC circuit is
shown in Figure 20.18.

5.)  One might wonder what is really
happening at resonance.  A more concise

FIGURE 20.19a

inductor fights any 
 change in current

         capacitor initially
charged (ready to discharge)

switch
closed 
at t = 0

-

-+

ignoring
resistance
in circuit

explanation follows:

a.)  Assume a capacitor in an
LC circuit is initially charged (see
Figure 20.19a--there is resistance
in the circuit but we will ignore it
for now).  There is no power
supply in the circuit, so when the
switch is thrown at t = 0 the
capacitor begins to discharge
through the inductor.

b.)  As a coil, the inductor
produces a back-EMF which
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i

FIGURE 20.19b

t

damped current in an 
oscillating RLC circuit
        w/o power supply

fights the increase of current in the circuit.  As such, the current rises
more slowly than would otherwise have been the case (though it does
still rise).

c.)  Sooner or later, the free charge on the discharging capacitor
begins to run out.  As this occurs, the current in the circuit declines
prompting the inductor to produce an induced EMF that fights that
change.

d.)  Bottom line: Charge continues to flow in the circuit even after
the capacitor is completely discharged.

e.)  As current continues to flow, the capacitor begins to recharge
going the other way (i.e., what was the positive terminal becomes the
negative terminal and vice versa).  When the induced current finally
dies out, we find ourselves with a charged capacitor all ready to
discharge, starting the whole process over again.

f.)  If there is no resistance in the
circuit (i.e., if the system's wires are
superconductors), this oscillating AC
charge flow will continue forever.  With
resistance in the circuit, the amplitude
of the current will diminish with time
but the charge/discharge frequency will
not change (see Figure 20.19b).

g.)  The natural frequency of this
discharge, charge, discharge process is
related to the size of the inductor and

capacitor.  Specifically, the system's natural frequency is 
  

1
2

1
π LC

.

h.)  It shouldn't be hard to imagine what will happen if a power
supply is placed in a circuit.  If the frequency of the power supply does
not match the natural frequency of the (R)LC combination, the
charge/discharge frequency will fight the alternative voltage provided
by the out-of-step power supply, and the net current in the circuit will
be very small if not zero.

On the other hand, if the frequency of the power supply is just right

(i.e., 
  

1
2

1
π LC

), its voltage will resonate with the charge/discharge

cycle and the amplitude of the net current in the circuit will grow
large.  That frequency is the resonance frequency for the (R)LC circuit,
and at that frequency the current will be as large as it ever can be.
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H.)  Summary of Circuit Elements in AC Circuits:

1.)  The following is a chart devoted to presenting the information
outlined above in an easily digested format.  KNOW WHAT THE SYMBOLS
MEAN--simply memorizing relationships is NOT going to help you on your
next test!

  element symbl units       resistive nature           phase filter

resistor     R ohms resistance     R  (ohms)   no phase shift none

inductor     L henrys
inductive reactance:
         XL = 2πνL
                        (ohms)

VL leads circuit
     current by π/2
               radians

low
  pass

capacitor     C farads
capacitive reactance:
      XC = 1/(2πνC)
                       (ohms)

VC lags circuit
     current by π/2
               radians

high
   pass

RLC
      circuit

   ---
   ---
   ---

     ---
     ---
     ---

impedance:
   Z = [R2+ (XL-XC)2]1/2

                            (ohms)

phase shift  (φ)
=tan-1[(XL-XC)/R]
             (radians)

re-
son-
ance
frequ.

Note:  Resonance frequency is νres = 
  

1
2

1
π LC

 hertz.

I.)  Impedance Matching and Transformers:

1.)  Optical light passing through an interface (i.e., a boundary)
between two media will normally experience partial reflection caused by the
fact that the two media have different densities.  The only time a light beam
will not reflect is when it passes from one medium into a second medium
whose "density environment" is exactly the same as the first.

2.)  Consider any complex electrical circuit--say, a stereo system
connected to speakers.  If the impedance of the stereo and the impedance of
the collective speakers is the same, the signal will pass from the one to the
other just as light passes through two common-density environments (i.e.,
there will be no reflection at the interface between the two systems).  If, on the
other hand, the resistive nature of the circuitry from which the signal comes
(i.e., the stereo) is different from the resistive nature into which the signal
must go (i.e., the speakers), reflection will occur at the interface.  Put
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another way, maximum power will be transferred from the stereo to the
speakers when the impedance of both is the same.

3.)  The problem frequently confronting circuit designers is the fact
that stereo systems have large impedances whereas speaker circuits have
only tiny impedances.  The question is, "How does one trick the signal into
thinking the circuit it is entering has the same impedance as the circuit it is
leaving?"

The answer involves the use of a transformer and is wrapped up in
what is called impedance matching.

4.)  A quick review of transformers:  A transformer is essentially a
pair of coils linked via a common magnetic field and, hence, a common
magnetic flux.  The turns-ratio (Ns/Np) dictates how the secondary's voltage
and current is related to the primary's voltage and current.  That is:

a.)  Ns/Np = εs/εp = ip/is (this is true in all cases).  Additionally;

b.)  If Ns< Np, the secondary's voltage is smaller than the

primary's voltage (εs < εp) and the transformer is called a step-down
transformer.  In step-down transformers, the current in the secondary
is larger than the current in the primary (i.e., is > ip).

c.)  If Ns> Np, the secondary's voltage is larger than the primary's

voltage (εs > εp) and the transformer is called a step-up transformer.
In step-up transformers, the current in the secondary is smaller than
the current in the primary (i.e., is < ip).

5.)  Having so reviewed, consider the following situation.  A 1200 Ω
stereo system (Zst = 1200 Ω) is hooked up to a set of 8 Ω speakers (Zsp = 8 Ω).
From the signal's standpoint, how can we use a transformer to make 8 Ω
speakers look like 1200 Ω elements?

a.)  The first thing to notice is that as the signal comes in to the
transformer, it sees a net impedance (Ztransf.+load) made up of the
primary coil's impedance, the secondary coil's impedance, and the
load's impedance (Zload).  This net impedance is what we want to
numerically equal the stereo's impedance (Zst).  Put another way, the
signal sees an entire package which, if the transformer system has
been designed optimally, will appear to have an impedance of 1200 Ω.
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b.)  We know that the primary coil's current ip will be the current
coming from the stereo (i.e., ip = istereo) while the primary coil's voltage
is some value Vp.  From Ohm's Law, the impedance of the stereo
circuit (Zst) will be:

Zst = Vp/ip (= 1200 Ω for our example).

c.)  As the current from the stereo is ip and the impedance of the
stereo is Zst, the energy provided by the stereo to the primary coil will
be:

     Pp = ip
2Zst.

d.)  Assuming an ideal transformer, the power provided by the
primary will be completely transferred to the secondary.  That is:

    Pp = Ps.

e.)  We know that the energy provided to the secondary circuit  (i.e.,
the power available to the secondary circuit from the primary coil) will
be dissipated by the load (the speakers).  That is:

       Ps = is
2Zload.

f.)  Equating the power terms yields:

Pp = Ps
                ip

2 Zst = is
2 Zload

            ⇒     Zst = (is
2/ ip

2 ) Zload (Equation A).

g.)  We have already established the relationships that exist
between the secondary and primary currents and the turns-ratio of the
transformer.  Specifically, we know that:

                   Np/Ns = is/ip.

h.)  Using this to eliminate the current terms in Equation A leaves
us with:

 Zst = (Np
2/ Ns

2 ) Zload.
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i.)  What does this relationship mean?  Zst  and Zload are fixed.
Evidently, for the signal to transfer without reflection, the turns-ratio
of the transformer must be such that:

           (Np/ Ns)
2 = Zst / Zload.

j.)  Bottom line:  To modify the speaker-load to suit the incoming
signal (i.e., to impedance match), we must use a transformer whose
turns-ratio is such that:

(Np/ Ns)
2 = Zst / Zload.

where Zload is the true load resistance (i.e., that of the speakers) and
Zst is the impedance of the signal's source.

k.)  For our situation, Np/Ns = (1200 Ω/8 Ω)1/2 = 12.24/1.  If the
winds are Np = 1224 and Ns = 100, the signal will see the load as 1200Ω,
and no reflection will occur.
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QUESTIONS

20.1)  An AC voltage source is found to produce a 12 volt peak to peak
signal at 2500 hertz.

a.)  Characterize this voltage as a sine function.
b.)  Determine the RMS voltage of the source.
c.)  It is found that when a capacitor and resistor are placed across

the source as characterized above, an ammeter in the circuit reads 1.2
amps.  What is the maximum current drawn from the source?

20.2)  An RC circuit is hooked across an AC power supply.  Which of the
following statements are true (there can be more than one)?  Explain each
response.

a.)  The RMS voltage across the resistor is the same as the average
voltage across the resistor.

b.)  The RMS voltage across the resistor is equal to R times the RMS
current through the resistor.

c.)  The RMS voltage across the resistor will be very large if the
capacitive reactance is very large.

d.)  The RMS current in the circuit will be very large if the
capacitive reactance is very small.

e.)  A decrease in frequency will increase the voltage across the
capacitor.

f.)  An increase in the capacitance will increase the current in the
circuit for a given frequency.

g.)  A decrease in frequency will increase the voltage across the
resistor.

20.3)  An RL circuit is hooked across an AC power supply.  Assuming the
inductor's internal resistance rL equals zero, which of the following
statements are true (there can be more than one)?

a.)  The RMS voltage across the resistor is equal to R times the
RMS current through the resistor.

b.)  The RMS voltage across the resistor R will be very large if the
inductive reactance is very large.

c.)  The RMS current in the circuit will be very large if the
inductive reactance is very small.

d.)  A decrease in frequency will increase the voltage across the
inductor.
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FIGURE I

14 ohms12 mH

V(t) = V   sin (2π   t)o

12 ohms 1200 nf 

e.)  An increase in the inductance will increase the current in the
circuit for a given frequency.

f.)  A decrease in frequency will increase the voltage across the
resistor.

20.4)  Considering the circuit shown in
Figure I, which of the resistors will dissipate
most of the power (that is, energy) at a very
high frequency?

20.5)  A circuit has 220 ohms of impedance when a 95 ohm resistor is
connected in series with a capacitor and a power source (Vmax = 80 volts)
supplying power at 300 hertz.

a.)  What is the capacitive reactance at this frequency?
b.)  Determine the circuit's impedance at 1000 hertz.
c.)  Determine the circuit's RMS current at 1000 hertz.

20.6)  A circuit driven at 240 hertz has 60 ohms of impedance when a 12
ohm resistor is connected in series with an inductor whose internal
resistance is 8 ohms.  The circuit's power source provides 70 volts RMS.

a.)  What is the inductive reactance at this frequency?
b.)  Determine the circuit's impedance at 1000 hertz.
c.)  Determine the circuit's RMS current at 1000 hertz.

20.7)  An RLC circuit incorporates a 12 ohm resistor, a 60 mH inductor,
and a 12 µf capacitor hooked in series across a power supply whose time-
dependent voltage is 140 sin (1100 t).

a.)  Determine the frequency of the power supply's signal.
b.)  Determine the capacitive reactance at this frequency.
c.)  Determine the inductive reactance at this frequency.
d.)  Determine the impedance of the circuit at this frequency.
e.)  Determine the phase shift at this frequency.  Is the voltage

leading or lagging the current?
f.)  Determine the power supply's RMS voltage.
g.)  Determine the RMS current in the circuit at this frequency.
h.)  Determine the resonance frequency for this circuit.
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i.)  Write out the time-dependent power supply voltage function at
resonance.

j.)  Determine the impedance of the circuit at resonance.
k.)  Determine the RMS current in the circuit at resonance.

20.8)  A transformer has 200 turns in its primary coil.  A radio circuit
has 237 ohms of impedance.  Its signal has to be played through a 12 ohm
speaker.

a.)  Impedance match the two circuits.  That is, explain how you
would effect the match and give any pertinent numbers.

b.)  Did you use a step-down or step-up transformer?


